Image of the Earth from a NASA satellite.
The sky appears black from out in space
because there are so few molecules
to reflect light. (Why the sky
appears blue to us on
Earth has to do with
scattering of light by
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Introduction,

Measurement, Estimating

CHAPTER-OPENING QUESTIONS—Guess now!
1. How many cm? are in 1.0m*?
(a) 10. (b) 100. (c) 1000. (d) 10,000. (e) 100,000. (f) 1,000,000.

2. Suppose you wanted to actually measure the radius of the Earth, at least
roughly, rather than taking other people’s word for what it is. Which response
below describes the best approach?

(a) Use an extremely long measuring tape.

(b) It is only possible by flying high enough to sce the actual curvature of the Earth.
(¢) Use a standard measuring tape, a step ladder, and a large smooth lake.
(d) Use a laser and a mirror on the Moon or on a satellite.

(e) Give up; it is impossible using ordinary means.

[We start each Chapter with a Question—sometimes two. Try to answer right away. Don’t worry about
getting the right answer now—the idea is to get your preconceived notions out on the table. If they
are misconceptions, we expect them to be cleared up as you read the Chapter. You will usually get

another chance at the Question(s) later in the Chapter when the appropriate material has been covered.
These Chaprer- Opening Questions will also help you see the power and usefulness of physics]
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molecules of the
atmosphere, as

discussed in
Chapter 24)
Note the
storm off
the coast
of Mexico.
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FIGURE 1-1 Aristolle is the central
figure (dressed in blue) at the top of
the stairs (the figure next to him is
Plato) in this famous Renaissance
portrayal of The School of Athens,
painted by Raphacel around 1510.
Also in this painting, considered
one of the greal masterpicces in art,
are Euclid (drawing a circle at the
lower right), Plolemy (extreme
right with globe), Pythagoras,
Socrates, and Diogenes,

hysics is the most basic of the sciences. It deals wit'h ‘lhc I;chnvim" .;fmj
P structure of matter. ‘The field of physics is usually d-IVId(:d into classical

physies which includes motion, ﬂslidh‘. heat, suum_j. light, lf'(:'(:l'.:'l(.‘ll'y, :m'd.
magnetism; and modern physics which includes the topics of fl.:‘ldllV'l r{: .r.l.ntm;
structure, quantum theory, condensed matler, nuclear phym'cs, (':Iclﬂl:‘l:lll.!ry Lm hsc :..;:n ;
cosmology and astrophysics, We will cover all these topics in t}'u.s )Iou ) %l ’ .l.n}:,
with motion (or mechanics, as itis often called) and ending with ln},)llm_)s rc.c,L;:E
results in fundamental particles and the cosmos. But hcf'ufc Wf:” .c‘,jgln nn l,t
physics itself, we take a briel look at how this overall activity called “science,

including physics, is actually practiced.

1-1 The Nature of Science

is gencrally considered to be

The principal ai sciences, i ing physics
e principal aim of all sciences, including physics, s \
; ! bservations of the world around us. Many people

the search for order in our 0 ‘ & s
i S olle oL isin

think that science is a mechanical process of L(J”(:Clmg l:af.lts ;;1::: e mang

theories. But it is nol so simple. Science is a crealive activity y

ivities of the human mind. o

tion of events, which includes

respects resembles other creative act st

One important aspeet of science 1s ohservi : ;
the design n[:ul carryinlg out of experiments. But obsc_rvat:on a.mf ci(l?ic':)nrniz':]m:
require imagination, because scientists can never include _LVJ-FY : lgabout
description of what they observe. l'lcncc(,] scwnlr_sts mlust make judgments
what is relevant in their observations and experiments.

Consider, for example, how two great minds, Arisloll'c (384-322 II.C:;
Fig. 1-1) and Galileo (1564-1642; Fig. 2-18), interpreted motion along a hori-
zontal surface. Aristotle noted that objects given an initial push along the ground
(or on a tabletop) always slow down and stop. Conscquently, Aristotle ar'chd,
the natural state of an object is to be at rest. Galilco, the first true experimen-
talist, reexamined horizontal motion in the 1600s. He imagined that if friction
could be eliminated, an object given an initial push along a horizontal surface
would continue to move indefinitely without stopping. He concluded that for an
object 1o be in motion was just as natural as for it Lo be at rest. By inventing a
new way of thinking about the same data, Galileo founded our modern view of
motion (Chapters 2, 3, and 4), and he did so with a leap of the imagination.
Galileo made this leap conceptually, without actually eliminating friction.

2 CHAPTER 1 Introduction, Measurement, Estimating
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O.bscrvalion. with carcful experimentation and measurement, is one side of
the sc;u:nliﬁc process. The other side is the invention or creation of theories (o
explain z‘md order the observations, Theorics arc never derived direetly from
OhSCII'VIlllOIIS. Obscrvations may help inspire a theory, and theories are accepted
or rcfjccleq based on the results of observation and experiment.

Theories are inspirations that come from the minds of human beings, For
oxq1uplc. the idea that matter is made up of atoms (the atomic theory) was not
;1rrn.'cd at by dircct observation of atoms—we can’t see atoms directly. Rather,
the idea sprang from creative minds. The theory of relativity, the electromag-

netic theory of light, and Newton’s law of universal gravitation were likewisc
the result of human imagination.

L

,_,._.—...

-

~ The great theories of science may be compared, as creative achicvements, :
with great ‘:vorks of art or literature. But how does science differ [rom these
Olln_ar creative activities? One important difference is that science requires
testing of its ideas or theories to see if their predictions are borne out by cxper-
3ment. But theories are not “proved” by testing. First of all, no measuring
instrument is perfect, so exact confirmation is not possible. Furthermore, it is
not possible to test a theory for every possible set of circumstances. Hence a
theory cannot be absolutely verified. Indeed, the history of science tells us that
long-held theories can sometimes be replaced by new ones, particularly when
new experimental techniques provide new or contradictory data.

A new theory is accepted by scientists in some cases because its predictions
are quantitatively in better agreement with experiment than those of the older
theory. But in many cases, a new theory is accepted only if it cxplains a greater
range of phenomena than does the older one. Copernicus’s Sun-centered theory
of the universe (Fig. 1-2b), for example, was originally no more accurate than
Ptolemy’s Earth-centered theory (Fig. 1-2a) for predicting the motion of heav-
enly bodies (Sun, Moon, planets). But Copernicus’s theory had consequences
that Ptolemy’s did not, such as predicting the moonlike phases of Venus. A
simpler and richer theory, one which unifies and explains a greater variely of
phenomena, is more useful and beautiful to a scientist. And this aspect, as well
as quantitative agreement, plays a major role in the acceptance of a theory.

——

FIGURE 1-2 (a) Ptolemy’s geocentric view of the universe. Note at the center the four elements of the
ancients: Earth, water, air (clouds around the Earth), and fire; then the circles, with symbols, for the Moon,
Mercury, Venus, Sun, Mars, Jupiter, Saturn, the fixed stars, and the signs of the zodiac. (b) An carly
representation of Copernicus's heliocentric view of the universe with the Sun at the center. (See Chapter 5.)
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An important aspect of any theory is how well it can quantitatively pregi l

phenomena, and from this point of view a new lheor'y may (,)flcn scemrlo be f)rf]}’
a minor advance over the old one. For example, Einstein's l’hcory of relativy
gives predictions that differ very little from the older l’hc:oglest of Gfa]ll]e? ang
Newton in nearly all everyday situations. Its predictions are clgr TGRUNLLY I the
extreme case of very high speeds close to the speed of Ilghl_. But qruanulalwg
prediction is not the only important outcome of a theory. C)u1 view of the worjy
is affected as well. As a result of Einstein’s theory of relativity, for example, oy,
concepts of space and time have been completely altered, a|.1d wz h_avc czome -
see mass and energy as a single entity (via the famous equation £ = mc”),

W = 4 1-2 Physics and its Relation to
N AR Other Fields

- $oge —_—

l}‘\ 2 e (e L For a long time science was more Of less a umti]c.l t\"-fht?gnl;nb‘::‘fl"xe:?] ";lufal
. 1Pt . . i cti

l R philosophy. Not until a century or.two ago did the distin piachome thg SlyS]Cg

"\, : and chemistry and even the life sciences become promine e a'l;lrp

i ¥ “q" : distinction we now see between the arts and the sciences y a few

centuries old. It is no wonder then that the development of physics has both
influenced and been influenced by other fields..For example, the notebooks
(Fig. 1-3) of Leonardo da Vinci, the great Renaissance artist, ‘researcher, and
engineer, contain the first references to the forces acting within a stlructure. a
subject we consider as physics today; but then, as now, it has great relevance to
architecture and building. .

Early work in electricity that led to the discovery of t‘he el.ectnc l?a_ttery anq
electric current was done by an eighteenth-century physiologist, Luigi Qalvam
(1737-1798). He noticed the twitching of frogs’ legs in response to an 'elelctnc spark
and later that the muscles twitched when in contact with two dissimilar metals
(Chapter 18). At first this phenomenon was known as “animal electricity,” but it
shortly became clear that electric current itself could exist in the absence of an animal.

Physics is used in many fields. A zoologist, for example, may find physics useful
in understanding how prairie dogs and other animals can live underground without
suffocating. A physical therapist will be more effective if aware of the principles
of center of gravity and the action of forces within the human body. A know-
FIGURE 1-3 Studies on the forces  ]edge of the operating principles of optical and electronic equipment is helpful in a
in structures by Leonardo da Vinci  yariety of fields. Life scientists and architects alike will be interested in the nature
(1452-1519). of heat loss and gain in human beings and the resulting comfort or discomfort.
Architects may have to calculate the dimensions of the pipes in a heating system
or the forces involved in a given structure to determine if it will remain standing
(Fig. 1-4). They must know physics principles in order to make realistic designs
and to communicate effectively with engineering consultants and other specialists.

FIGURE 1-4 (a) This bridge over the River Tiber in Rome was built 2000 years ago and still stands.
(b) The 2007 collapse of a Mississippi River highway bridge built only 40 years before,
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From the aesthetic or psychological point ol view, too, architects must be
aware of the Torees involved in astrueture—lor example instability, even it only
illusory, can be discomlorting to those who must live or work in the structure.

The list of ways in which physics relates to other ficlds is extensive. In the
Chapters that follow we will discuss many such applications as we earry out our
principal aim ol explaining basic physics,

1-3 Models, Theories, and Laws

When scientists are trying to understand a particular set of phenomena, they often
make use of 4 model, A model, in the scientilic sense, is a kind ol analogy or
mental image of the phenomena in terms of something else we are alv sady familiar
with, One example s the wave model of light. We cannot see waves of light as we
can water waves. But it is valuable to think of light as made up of waves, because
experiments indicate that Tight behaves in many respects as water waves do.

y The purpose of a model is to give us an approximate meatal or visual
picture—something (o hold on to—when we cannol see what actually is
happening, Models often give us a deeper understanding: the analogy toa known
system (for instance, the water waves above) can suggest new experiments (0
perform and can provide ideas about what other related phenomena might
oceur,

You may wonder what the difference is between o theory and a model.
Usually a model is relatively simple and provides a structural similarity to the
phenomena being studied. A theory is broader. more detailed. and can give
quantitatively testable predictions, often with great precision. I is important. how-
ever, nol to confuse a model or a theory with the real system or the phenomena
themselves,

Scientists have given the title law to certain concise bul general statements
about how nature behaves (that clectric charge is conserved, for example).
Often the statement takes the form of a relationship or cquation between
quantitics (such as Newton's sceond law. I = ma).

Statements that we call laws are usually experimentally valid over a wide
range of obscrved phenomena. For less general statements, the term principle
is often used (such as Archimedes’ principle). We use “theory™ for a more
general picture of the phenomena dealt with,

Scientific laws are different from political laws in that the latter are prescrip-
five: they tell us how we ought 1o behave. Scientific laws are descriptive: they do
not say how nature should behave, but rather are meant to describe how nature
does behave. As with theorics, laws cannot be tested in the infinite variety of
cases possible. So we cannol be sure that any law is absolutely true. We use the
term “law™ when its validity has been tested over a wide range of cases, and
when any limitations and the range of validity are clearly understood.

Scientists normally do their research as if the accepted laws and theories
were true. But they are obliged to keep an open mind in case new information
should alter the validity of any given law or theory.

1-4 Measurement and Uncertainty;
Significant Figures

In the quest to understand the world around us, scientists seek to find relation-
ships among physical quantities that can be measured.

Uncertainty
Reliable measurements are an important part of physics. But no measurcment is
absolutely precise. There is an uncertainty associated with every measurement.

SECTION 1-4 Measurement and Uncertainty; Significant Figures 5
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Among the most important sources of.unccrlainly. other thgn b.]L.mdcrs, are the
limited accuracy of every measuring instrument a_ngl.thc inability to read g
instrument beyond some fraction of the smallest dw:smn shown. For example,
if vou were to use a centimeter ruler to measure the width of a board (Fig, 1-5),
the result could be claimed to be precise to about.().] cm (] mr'n), the smalleg
division on the ruler. although half of this value might be a valid C.]ﬂim as wel),
The reason is that it is difficult for the observer to estimate (or “mlcrpolate“)
between the smallest divisions. Furthermore, the ruler itself may not have beep,
manufactured to an accuracy very much better than this.

When giving the result of a measurcment, it is imporlapt to state the
estimated u}lcertainly in the measurement. For example, th.e width of a boarq
might be written as 8.8 £ 0.1 cm. The + 0.1 cm (“plus or minus 0.1 cm”) repre.
- ser;ts the estimated uncertainty in the measurement, so that lhe_ actual width
FIGURE 1-5 .\.i..,., - P most likely lies between 8.7 and 8.9 cm. The percent uncertainty is the ratio of

=5 Measuring the width s o X | suliinlied by 100, For exumpls, if the
of a board with a centimeter ruler. e uncertainty 1o the measured value, P I th
Accuracy is about + 1 mm. measurement is 8.8 cm and the uncertainty about 0.1 cm, the percent uncertainty s

0.1
— X 100% = 1%,
8.8
where =~ means “is approximately equal to.” B N
Often the uncertainty in a measured value is not specified explicitly. In such
cases, the

uncertainty in a numerical value is assumed to be one or a few units in the
last digit specified.

For example, if a length is given as 8.8 cm, the uncertainty is assumed to be
about 0.1 cm or 0.2 cm. It is important in this case that you do not write 8.80 cm,
because this implies an uncertainty on the order of 0.01 cm; it assumes that the
length is probably between 8.79 cm and 8.81 cm, when actually you believe it is
between 8.7 and 8.9 cm.

CONCEPTUAL EXAMPLE 1-1] Is the diamond yours? A friend asks to
borrow your precious diamond for a day to show her family. You are a bit
worried. so you carefully have your diamond weighed on a scale which reads
8.17 grams. The scale’s accuracy is claimed to be + 0.05 gram. The next day you
weigh the returned diamond again, getting 8.09 grams. Is this your diamond?

RESPONSE The scale readings are measurements and ar
do not necessarily give the “true” value of the mass. Each
hgve been high or low by up to 0.05 gram or so. The actual mass of your
diamond lies most likely between 8.12 grams and 8.22 grams. The actual mass
of the returned diamond is most likely between 8.04 grams and 8.14 grams

.14 grams.

These two ranges overlap, so the data d i
, e 0 not give you a stron ason to
doubt that the returned diamond is yours, e °r

€ not perfect. They
measurement could

Significant Figures

"I-“he.number of reliably known digits in a number is called the number of
s:gmﬁcar,t figures. Thus there are four significant figures in the number 23.21 cm
and two in the number 0.062 cm (the zeros in the latter are merely place h;nlders
that show where the decimal point goes). The number of significant figures may not
always be clear. Take, for example, the number 80. Are there one or two signifi-
cant ﬁgures'{ We need words here: If we say it is roughly 80 km between two
cities, there is only one significant figure (the 8) since the zero is merely a place
holder. If there is no suggestion that the 80 is a rough approximation, then we
:zls;lznﬁn]en as;t;{me (as we will in this book) that it is 80 km within an ac;ctlracy of
= IOor'l‘h_m._Fand then the 80 ha§ two significant figures. If it is precisely
- towithin £ 0.1km, then we write 80.0 km (three significant figures).

6 CHAPTER 1 Introduction, Measurement, Estimating
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When making measurements, or when doing calculations, you should avoid
the temptation to keep more digits in the final answer than is justified: see boldface
statement on previous page. For example. to calculate the area of a rectangle 11.3cm
by 6.8 cm. the result of multiplication would be 76.84 cm®. But this answer can not
be accurate to the implied 0.01 cm” uncertainty. because (using the outer limits
of the assumed uncertainty for each measurement) the result could be between
11.2cm X 6.7cm = 75.04cm’ and 11.4cm X 6.9 cm = 78.66 cm”. At best, we can
quote the answer as 77 cm’, which implies an uncertainty of about 1 or 2 cm’.
The other two digits (in the number 76.84 cm?) must be dropped (rounded off)
because they are not significant. As a rough general rule we can say that

the final result of a multiplication or division should have no more digits than
the numerical value with the fewest significant figures.

In our example, 6.8 cm has the least number of significant figures. namely two. Thus
the result 76.84 cm® needs to be rounded off to 77 cm®.

EXERCISE A‘ The area of a rectangle 4.5 cm by 3.25 cm is correctly given by (a) 14.625 cm™:
(b) 14.63cm™; (c) 14.6cm™ (d) 15 cm’.

When adding or subtracting numbers, the final result should contain no more
decimal places than the number with the fewest decimal places. For example. the
result of subtracting 0.57 from 3.6 is 3.0 (not 3.03). Similarly 36 + 8.2 = 44. not 44.2.

Be careful not to confuse significant figures with the number of decimal places.

EXERCISE B For cach of the following numbers. state the number of significant
figures and the number of decimal places: (a) 1.23: (b) 0.123: (c) 0.0123.

Keep in mind when you use a calculator that all the digits it produces may
not be significant. When vou divide 2.0 by 3.0, the proper answer is 0.67, and
not 0.666666666 as calculators give (Fig. 1-6a). Digits should not be quoted in a
result unless they are truly significant figures. However. to obtain the most
accurate result. vou should normally keep one or more extra significant figures
throughout a calculation, and round off only in the final resulr. (With a calcu-
lator. vou can keep all its digits in intermediate results.) Note also that
calculators sometimes give too few significant figures. For example. when you
multiply 2.5 X 3.2. a calculator may give the answer as simply 8. But the answer is
accurate to two significant figures. so the proper answer is 8.0. See Fig. 1-6b.

CONCEPTUAL EXAMPLE 1-2| Significant figures. Using a protractor
(Fig. 1-7). you measure an angle to be 30°. (a) How many significant figures
should vou quote in this measurement? (b) Use a calculator to find the cosine
of the angle you measured.

RESPONSE (a) If you look at a protractor, you will see that the precision
with which vou can measure an angle is about one degree (certainly not 0.1%).
So vou can'qUOKE two significant figures, namely 30° (not 30.0%). (b) If you
enter cos30° in your calculator. you will get a number like 0.866025403.
But the angle vou entered is known only to two significant figures, so its cosine
is correctl_vhgi\'-en by 0.87: you must round your answer to two significant figures.

NOTE Trigonometric functions, like cosine, are reviewed in Chapter 3 and Appendix A.

Scientific Notation

We commonly write numbers in “powers of ten,” or “scientific” notation—for
instance 36,900 as 3.69 X 10°, or 0.0021 as 2.1 X 10, One advantage of
scientific notation (reviewed in Appendix A) is that it allows the number of
significant figures to be clearly expressed. For example. it is not clear whether
36,900 has three. four. or five significant figures. With powers of 10 notation
the ambiguity can be avoided: if the number is known to three significant
figures, we write 3.69 X 10°, but if it is known to four, we write 3.690 X 10%

EXERCISE C Write each of the following in scientific notation and state the number of
significant figures for each: (a) 0.0238: (b) 42.300; (c) 344.50.

-r--v--v'--'-'r-
qr P ePT TP P 0T O T
o ads o ode L BE R
- T ™ o -
=T
o= W

FIGURE 1-6 These two calculators
show the wrong number of significant
figures. In (a). 2.0 was divided by 3.0.
The correct final result should be
0.67. In (b). 2.5 was multiplied by 3.2.
The correct result is 8.0.

PROBLEM SOLVING
Repari only the proper number of
significant figures in the final result. But
keep extra dizits during the calculation

FIGURE 1-7 Example 1-2.
A protractor used to measure an
angle.

SECTION 1-4 Measurement and Uncertainty; Significant Figures 7
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# percent Uncertainty vs. Significant Figures

e is only approximate, and in some cases may under-

ignifi es rul
The significant figur uncertainty) of the answer. Suppose for example we

estimate the accuracy (or
divide 97 by 92:

97
92

Both 97 and 92 have two significant figures, so the rule says to gj}"; !}f‘e answer
as 1.1. Yet the numbers 97 and 92 both imply an uncertainty of £11i t“‘_’ other
unce;rtainty is stated. Both 92+ 1 and 97 £ 1 imply an uncertainty of
about 1% (1/92 =~ 0.01 = 1%). But the final result to two s_lgmfuf:arll)t ﬂglllgzs
» i : ich is an uncertainty of about 10%
is 1.1, with an implied uncertainty of & 0.1, which 1s ;
(0.1/1.1 = 0.1 zplo%). It is better in this case to give the answer as 1.05f (fglah
is three significant figures). Why? Because 1.05 implies an uncer -tamttﬁ/ iy 1]
which is 0.01/1.05 ~ 0.01 ~ 1%, just like the uncertainty in the origina
numbers 92 and 97. : .
SUGGESTION: Use the significant figures rule, but consider the % uncertainty
too, and add an extra digit if it gives a more realistic estimate of uncertainty.

= 105 = L1

Approximations

Much of physics involves approximations, often because we do not.have th.e
means to solve a problem precisely. For example, we may choose to ignore air
resistance or friction in doing a Problem even though they are p'resent in the
real world, and then our calculation is only an approximation. In doing Problems,
we should be aware of what approximations we are making, and be aware
that the precision of our answer may not be nearly as good as the number of
significant figures given in the result.

Accuracy vs. Precision

There is a technical difference between “precision” and “accuracy.” Precision in
a strict sense refers to the repeatability of the measurement using a given instru-
ment. For example, if you measure the width of a board many times, getting
results like 8.81 cm, 8.85cm, 8.78 cm, 8.82 cm (interpolating between the 0.1 cm
marks as best as possible each time), you could say the measurements give a
precision a bit better than 0.1cm. Accuracy refers to how close a measurement
is to the true value. For example, if the ruler shown in Fig. 1-5 was manufac-
tured with a 2% error, the accuracy of its measurement of the board’s width
(about 8.8cm) would be about 2% of 8.8cm or about =+ 0.2 cm. Estimated
uncertainty is meant to take both accuracy and precision into account.

1-5 Units, Standards, and
the SI System

The measurement of any quantity is made relative to a particular standard or unit
and this unit must be specified along with the numerical value of the quanlity-,
For exam_ple, W€ can measure length in British units such as inches
feet, or miles, or in the metric system in centimeters, meters, or kilometers. Tc;

length of a particular object is 18.6 is insufficient. The unit

» because 18.6meters is v i i
el ery different from 18.6inches or

For any unit we use,

such as_the meter for distance or the second for time,
dard which defines exactly how long one meter or one
that standards be chosen that are readily reproducible

o make a very accurate measurement can refer to the
ry and communicate with other people.
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Length

The first truly international standard was the meter (abbreviated m) established
as the standard of length by the French Academy of Sciences in the 1790s. The
standard meter was originally chosen to be one ten-millionth of the distance
from the Earth's equator to cither pole. and a platinum rod to represent this
length was made. (One meter is, very roughly. the distance from the tip of your
nose to the tip of your finger, with arm and hand stretched out horizontally.) In
1889, the meter was defined more precisely as the distance between two finely
engraved marks on a particular bar of platinum-iridium alloy. In 1960, to
provide even greater precision and reproducibility, the meter was redefined as
1.650.763.73 wavelengths of a particular orange light emitted by the gas
krypton-86. In 1983 the meter was again redefined, this time in terms of the
speed of light (whose best measured value in terms of the older definition of the
meter was 299.792.458 m/s, with an uncertainty of 1 m/s). The new definition
l‘f::lds: “The meter is the length of path traveled by light in vacuum during a
time interval of 1/299,792,458 of a second.™

British units of length (inch, foot, mile) are now defined in terms of the
meter. The inch (in.) is defined as exactly 2.54 centimeters (cm; lem = 0.01 m).
Other conversion factors are given in the Table on page A-73 in the back of this
book. Table 1-1 presents some typical lengths, from very small to very large,
rounded off to the nearest power of 10. See also Fig. 1-8. [Note that the abbre-
viation for inches (in.) is the only one with a period, to distinguish it from the

word “in".]

Time

The standard unit of time is the second (s). For many years, the second was
defined as 1/86.400 of a mean solar day (24 h/day X 60min/h X 60 s/min =
86,400 s/day). The standard second is now defined more precisely in terms of
the frequency of radiation emitted by cesium atoms when they pass between
two particular states. [Specifically. one second is defined as the time required
for 9,192.631,770 oscillations of this radiation.] There are, by definition, 60s in
one minute (min) and 60 minutes in one hour (h). Table 1-2 presents a range of
measured time intervals, rounded off to the nearest power of 10.

tModern measurements of the Earth's circumfercnce reveal that the intended length is off by about

one-fiftieth of 1%. Not bad!
#The new definition of the mete
299,792,458 m/s.

r has the effect of giving the speed of light the exact value of

FIGURE 1-8 Some lengths:

(a) viruses (about 10”7 m long)
attacking a cell; (b) Mt. Everest's
height is on the order of 10" m
(8850 m above sea level. to be precise).

(b)

TABLE 1-1 Some Typical Lengths or Distances
{order of magnitude)

TABLE 1-2 Some Typical Time Intervals
{order of magnitude)

Meters (approximate) Time Interval

Seconds (approximate)

Length (or Distance)

Neutron or proton (diameter) 107 m Lifetime of very unstable

Atom (diameter) 107%m subatomic particle 10735

Virus [see Fig. 1-8a] 1077 m Lifetime of radioactive elements 10725 to 10%s
Sheet of paper (thickness) 107 m Lifetime of muon 107 s

Finger width 1002 m Time between human heartbeats 10" s(=15s)
Football field length 10> m One day 10° s

Height of Mt. Everest [see Fig. 1-8b] 10 m One year 3% 107 s

Earth diameter 107 m Human lifc span 2% 10 &

Earth to Sun 10" m Length of recorded history 0 s

Earth to ncarest star 10" m Humans on Earth 107 s

Earth to nearest galaxy 102 m Age of Earth 107 s

Earth to farthest galaxy visible 10% m Age of Universe 4 %107 s
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' TABLE 1-3 Some Masses
__Mass ). Tl dard mass is a partjc
Kilograms Tl crol. ; ass is the kilogram (kg). The standz irlic-
Object (approximate)  The standard unit of mass is the kilog he International Bureau of Weighy
ular platinum-iridium cylinder, kept at th ; ined as exactly 1kg. A ran
Electron 10" kg and Measures near Paris, France, whose mass ls'dcfmc, as ¢ ¢] E 1bogc
Proton, neutron 1077 kg of masses is presented in Table 1-3, [For practical purposes, 1kg b
DNA molecule 10717 kp 2.2 pounds on Earth.] I . ;
: s : se the unified ato
Bacterium 107" kp When dealing with atoms and nmlc_culeS, we usually usc t Mic
Mosquito 1075 kg mass unit (u or amu). In terms of the kilogram,
Plum 107" kg lu = 1.6605 X 1077 kg, ) )
Kl 10° kg The definitions of other standard units for other qua"m.'es Will be given a5
Ship 0% kg we encounter them in later Chapters. (Precise values of this and other usefy]
2
Earth 6 X 10% kg numbers are given on page A-72.)
Sun 2x 0% g
Galaxy 107 kg Unit Prefixes

In the metric system, the larger and smaller units are defme.d in multiples of 10
from the standard unit, and this makes calcu[at'lon partlculfll‘]){ casy. IThus
I kilometer (km) is 1000 m, 1 centimeter is 1 m, 1 milhmeter.(mm)_ IS'F.L?)]”' ?TE cm,
and so on. The prefixes “centi-,” “kilo-,” and others.are listed in Table 1-4 ang
can be applied not only to units of length but to units of VO]U[‘I‘R’?, mass, or an

other unit. For example, a centiliter (cL) is 1 liter (L), and a kilogram (kg) is
1000 grams (g). An 8.2-megapixel camera has a detector with 8,200,000 pixels

(individual “picture clements™). .
In common usage, | um (= 10™°m) is called 1 micron.

Systems of Units
j li} PROBLEM SOLVING When dealing with the laws and equations of physics it is very important to use a
' Always use a consistent set of units— consistent sel of units, Several systems of units have been in use over the years,
Today the most important is the Systéme International (French for International
System), which is abbreviated SI. In SI units, the standard of length is the meter,

A
. the standard for time is the second, and the standard for mass is the kilogram.
TABLE 1-4 Metric (S) Prefixes  This system used to be called the MKS (meter—kilogram-second) system.
= A second metric system is the €gs system, in which the centimeter, gram, and
Prefix _ Abbreviation  Value second are the standard units of length, mass, and time, as abbreviated in the tit]e,
yotta Y 10% The British engineering system (although more used in the U.S. than Britain) has
zelta z 10*! as its standards the foot for length, the pound for force, and the second for time,
exa E 108 We use ST units almost exclusively in this book.
t P W= . ...
:'; er: = 02 “Basevs. Derived Quantities
; giti G 10° I;h.)fsm?l quan't{ljlesT;:an be d1v1de_d mto. two categories: bgse quantities and
_‘ mega M 106 !er_;vet jﬁ;?nfﬂu;. he corbrespondmg units for thesg quantities are called base
Kilo k 103 g;fe Jr"l tai:ls fj;-’]ﬂt:ff( i:lf:?lIS- ;4 fcl_se quantity must be defined ijn terms of a standard.
hacis h 162 o ossi’b[e Canist:Zisl 0 ‘slllmph;::ty, want.th.e smallest number of base quanti-
deka da 10! numl?er TS G iy L WOH 4 il deSC“PUQn of the physical world. This
deci d 10! seven, and those used in the S are given in Table 1-5.
centi c 1072
milli m 1073 TABLE 1-5 Sl Base Quantities and Units
micro’ o 1076 Quantity Unit Unit Abbreviation
nano n 9
i p :8_12 Length meter m
femto f 10-15 i second s
atto o 10-18 Mass ‘ kilogram kg
zepto z i Electric current ampere A
yocto y 10-% Temperature kelvin K
' is the Greek letter *muy Amo‘unt SR il mol
erer mu. Luminous intensity candela od
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All other quantities can be defined in terms of these seven base quantities,’ and
hence are referred to as derived quantities. An example of a derived quantity is
speed, which is defined as distance divided by the time it takes 1o travel that
distance, A Table on page A-73 lists many derived guantities and their units in
terms of base units, To define any quantity, whether base or derived, we can
specify a rule or procedure, and this is ealled an operational definition.

1-6 Converting Units

Any quantity we measure, such as a length, a speed, or an celectric current,

consists of a number and a unit. Often we are given a quantity in one scl of

units, but we want it expressed in another set of units, For example, suppose we

measure that a shell is 21.5 inches wide, and we want to express this in centi-

meters. We must use a conversion factor, which in this case is, by definition, exactly
lin. = 2.54¢em

or, written another way,

1 = 2.54cem/in.

Since multiplying by the number one does not change anything, the width ol our
shelf, in ¢m, is

21.5inches = (21.57m.) X (2.54%) = 54.6cm.

-

Note how the units (inches in this case) cancelled out (thin red lines). A Table
containing many unit conversions is found on page A-73. Lel’s consider some
Examples.

EXAME&]—BI The 8000-m peaks. There are only 14 peaks whose sum-
mits are over 8000m above sea level. They are the tallest peaks in the
world (Fig. 1-9 and Table 1-6) and arc referred to as “eight-thousanders.”
What is the elevation, in feet, of an elevation of 8000 m?

FIGURE 1-9 The world’s second

. highest peak, K2. whose summit is
APPROACH We need to convert meters to feet, and we can start with the  cyneidered the most difficult of the

conversion factor 1in. = 2.54cm, which is exact. That is, 1in. = 2.5400cm  «g00-ers.” K2 is seen here from the

to any number of significant figures, because it is defined Lo be. south (Pakistan). Example 1-3.
SOLUTION One foot is 12 in., so we can write
: Y = - @PHYSICS APPLIED
1t = (12 111..)(2.54 T'm) = 3048 cm 0.3048 m, PP —

which is exact. Note how the units cancel (colored slashes). We can rewrite
this equation to find the number of feet in 1 meter:

TABLE 1-6 The 8000-m Peaks

n

1m = 03048 = 3.28084 ft. Peak Height (m)
(We could carry the result to 6 significant figures because 0.3048 is exact, Mt Everest 8330
0.304800....) We multiply this equation by 8000.0 (to have five significant figures): K2 8611
fl Kangchenjunga 8586
8000.0m = (8000.0 m.) 3.28084 oy = 26,247 ft. Iholse 8516
Makalu 8462

i i 4 sca level.
An elevation of 8000 m is 26,247 {t 1bovS: . ‘ Cho Oyu i
NOTE We could have done the conversion all in one line: Eenilagls 3167
100 enr 1m.. 11t Manaslu 8156
= ; - = 26,2471t S

RB. = e m)( Im. ) (2-54 ent ) ( 12 ‘ma) Nanga Parbat 8125
The key is to multiply conversion factors, cach equal to one (= 1.0000), and  Annapurna 8091
to make sure which units cancel. Gasherbrum | 8068
e Broad Peak 8047
'Some exceptions are for angle (radians—sce Chapter 8), solid angle (steradian), and sound level Gasherbrum [1 8035
(bel or decibel, Chapter 12). No general agreement has been reached as to whether these are base Shisha Pangma <013

or derived quantities.
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